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Techniques for fault-tolerant
quantum error correction

Ben Reichardt
UC Berkeley
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Fault-tolerant, largerC

 High tolerable noise
 Low overhead

Quantum fault-tolerance problem
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 Idea: Encode ideal/logical circuit into quantum error-correcting code.  Apply
gates directly on the encoded data, each gate followed by error correction.

level-1 CNOT
failure rate

physical
failure rate

# CNOT locations

Encoding for fault tolerance

– m-qubit, t-error correcting code
[[m, 1, d=2t+1]]
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failure rate
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failure rate

# CNOT locations

EC2

EC2

Concatenated encoding for arbitrary accuracy

– m-qubit, t-error correcting code
[[m, 1, d=2t+1]]

 Idea: Encode ideal/logical circuit into quantum error-correcting code.  Apply
gates directly on the encoded data, each gate followed by error correction.
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Threshold theorems
For a physical error rate ε < εc, an N-gate ideal quantum
circuit can be reliably simulated with N poly(log N)
physical gates.

– Independent probabilistic noise
– εc > 0 [Aharonov & Ben-Or ‘97, Kitaev ‘97]
– εc > 2.7 x 10-5 [Aliferis, Gottesman, Preskill ‘05]
– εc > 6 x 10-6 with Pauli errors [R ‘05]
– εc ≥ 10-4 (today)
– εc = 1/2 for Bell measurement erasure errors (detected errors) [Knill ‘03]

Examples: 

Fault-tolerance threshold myths: 
Independent probabilistic noise.

Nonlocal gates.
Maximize the threshold regardless of the overhead.

For a physical error rate ε < εc, an N-gate ideal quantum
circuit can be reliably simulated with N poly(log N)
physical gates.

– Independent probabilistic noise
– εc > 0 [Aharonov & Ben-Or ‘97, Kitaev ‘97]
– εc > 2.7 x 10-5 [Aliferis, Gottesman, Preskill ‘05]
– εc > 6 x 10-6 with Pauli errors [R ‘05]
– εc ≥ 10-4 (today)
– εc = 1/2 for Bell measurement erasure errors (detected errors) [Knill ‘03]

– Non-Markovian local noise [Terhal/Burkard ‘04, Aliferis/Gottesman/Preskill ‘05]
– Correlated noise [Knill/Laflamme/Zurek ‘97]
– Local interactions

– 2D grid (nearest n’bor), 1D line (next-nearest) [Gottesman ‘99]
– with correlated noise [Aharonov, Kitaev, Preskill ‘05]

Examples: 

Threshold theorems
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Outline
 Idea for improved ancilla verification for error correction: Differently

prepare ancillas to verify against each other
– Makes postselection unnecessary with 7-qubit Steane code [Aliferis]
– Halves preparation complexity for 23-qubit Golay code (1200 → 600 CNOT
gates).  Allows detailed combinatorial analysis to show high provable threshold
(10-4)

 Idea: Differently prepare ancillas to
verify against each other

– No postselection for Steane code [Aliferis]
– Halves preparation complexity for 23-qubit
Golay code

Outline

 Technical background
– Error correction
– Quantum ECCs
– Stabilizer algebra

 Ancilla preparation and verification
– Steane preparation and heuristic verification

– for Steane 7-qubit, distance-3 code
– for Bacon/Shor 9-qubit, distance-3 code

– Strictly fault-tolerant verification
– repeated purification
– tweaked

 Rigorous noise threshold for 23-qubit, distance-7 Golay code
– Technical setup
– Combinatorial analysis
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Steane-type error correction
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Error correction properties

 Arbitrary state is brought back into
codespace (except with controlled errors:
weight-k errors with probability O(pk))

 On states with controlled errors, no
logical effect is applied (and errors remain
controlled)



8

Remarks

 Computation can “typically” continue
without waiting for error-correction
measurements to complete

– (when correction information becomes
available, propagate corrections through the
circuit)

 High-fidelity ancillas do not suffice (need both
high fidelity and uncorrelated errs)

      Ancilla verification
– Ancillas can’t be used until verified, so
computation has to wait for verification
measurements to complete

      Ancilla factories
– Prepare many ancillas in parallel and in
advance, so a verified ancilla is always ready

      High overhead

Quantum error-correcting codes

 [[n=4,k=2,d=2]] erasure code
– used in Knill’s fault-tolerance scheme together with certain [[6,2,2]] code

 [[5,1,3]] code
– not CSS — stabilizer includes, e.g., XZZXI

 Steane [[7,1,3]] code

 Bacon/Shor [[9,1,3]] operator ECC

 [[15,1,3]] Reed-Muller code
– allows for transverse (X+Z)/√2 application (for universality), but not self-dual

 Golay [[23,1,7]] code

distancephysical bitslogical bits

CSS code: All stabilizers can be written
as product of Xs or a product of Zs

codespace = simultaneous +1 eigenspace of code stabilizers



9

 E.g., Steane [[7,1,3]] code corrects arbitrary error on one qubit
– Based on classical Hamming [7,4,3] code

 Classical codewords in the 0/1 basis
Correct bit flip X errors

 Classical codewords in the +/- basis
Correct phase flip Z errors

CSS quantum stabilizer codes

 Corrects arbitrary error on one qubit
– Based on classical Hamming [7,4,3] code

Steane [[7,1,3]] quantum code

 Simultaneous +1 eigenspace of 6 independent Pauli “stabilizer” elements
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 Def: S stabilizes        if
 Rules:

– S, T stabilize             ST stabilizes
– S stabilizes                          stabilizes

 Def: Pauli group = tensor products of Pauli operators I, X, Y or Z (with phase ±1 or ±i)
– note all Paulis have half eigenvalues +1, half -1; pairs of Paulis either commute or anticommute

 Def: Stabilizer state on n qubits = intersection of +1 eigenspaces of n
independent commuting Paulis

 Example:

Stabilizer algebra

Operation State
Stabilizer

                                                .

2. prepare

3. CNOT1,2

1. prepare

 Rule: S stabilizes                          stabilizes

 Def: Stabilizer state on n qubits = intersection of +1 eigenspaces of n
independent commuting Paulis

 Example:

Operation State
Stabilizer

                                                .

Stabilizer algebra

2. prepare

3. CNOT1,2

1. prepare
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 Rule: S stabilizes                          stabilizes

 Example:

Stabilizer algebra

Initial stabilizers Final stabilizers

XIIIIII

IXIIIII

IIZIIII
IIIXIII

IIIIZII
IIIIIZI
IIIIIIZ

XIXIIIIXIXIXIIXIXIXIX

IXXIIXX

IIIXXXX
ZZZIIII
ZIIZZII
IZIZIZI
ZZIZIIZ

ZIZIZIZ
IZZIIZZ
IIIZZZZ
ZZZZZZZ

Steane code 

Outline
 Idea: Differently prepare ancillas to

verify against each other
– No postselection for Steane code [Aliferis]
– Halves preparation complexity for 23-qubit
Golay code

 Technical background
– Error correction
– Quantum ECCs
– Stabilizer algebra

 Ancilla preparation and verification
– Steane preparation and heuristic verification

– for Steane 7-qubit, distance-3 code
– for Bacon/Shor 9-qubit, distance-3 code
– for higher-distance codes

– Strictly fault-tolerant verification
– repeated purification
– tweaked

 Rigorous noise threshold for 23-qubit, distance-7 Golay code
– Technical setup
– Combinatorial analysis
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Steane encoded ancilla preparation

Steane encoded ancilla preparation



13

Steane encoded ancilla preparation

Steane heuristic verification
 Steane          encoding circuit:

– Gives correlated errors
– e.g., weight-two X errors occur with 1st-
order probability

– Z errors are not correlated, so Z error
verification is not required.

– ZL ~ ZZZ has no effect on         ;        two-
bit error ZZI has same effect as IIZ, so all Z
errors have reduced weight either 0 or 1.

Verification against X errors is 
required for fault tolerance
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 Purification: Prepare two ancillas, check one against the other.  Postselect on no
detected errors in second ancilla.

 In general: (but with a distance-3 code, this simplifies)

 Steane finds, roughly, that one round of purification works well (according to
simulations).  However, this is not strictly fault-tolerant for codes of distance > 3.

Steane heuristic verification

X errors X and Z errors

Def: Fault-tolerant: Weight >1 errors
are at most second-order events

Def: Strictly fault-tolerant: Weight-k
errors are at most kth-order events,
k ≤ t+1=(d+1)/2

Suffices for threshold existence

Required for p → pt+1 effective error
behavior

[Steane, quant-ph/0207119]

7

Encoding complexities

Encoding complexity can depend on code presentation.

[[   ,     ,   ]]
# qubits

# encoded
qubits distance

# rounds # gates

→ efficient
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Avoiding verification: Bacon/Shor 9-qubit code
 Shor’s code: Concatenate 3-qubit repetition code with its dual

– Repetition code: 0 → 000, 1 → 111

– Dual repetition code:                            ,

– Concatenation:

 Bacon: Remove code redundancies
– Operator error-correcting code

Stabilizers ZZI, IZZ, ZIZ.  
Logical X is XXX, logical Z is ZII ~ IZI ~ IIZ.
Corrects one bit flip (X) error.

Stabilizers XXI, IXX, XIX.  
Logical Z is ZZZ, logical X is XII ~ IXI ~ IIX.
Corrects one phase flip (Z) error.

Corrects one X error in
each block of three,
and one Z error.

Stabilizer
generators:

Ike covered this…
 Shor’s code: Concatenate 3-qubit repetition code with its dual
 Preparing encoded ancilla          :

 Bacon: Restore X/Z symmetry

Stabilizer
generators:

Thus                                                    , and requires no Z verification. [Aliferis]
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Z Error weight

Error order with

0 1 2 3

0 1 1 10 verifications
0 1 2 21 verification

0 1 2 32 verifications

 Purification: Prepare two ancillas, check
one against the other.  Postselect on no
detected errors in second ancilla.

 In general, repeated purification:

Def: Fault-tolerant: Weight >1 errors are at
most second-order events
Def: Strictly fault-tolerant: Weight-k errors
are at most kth-order events, k ≤
t+1=(d+1)/2

Golay code naïve verification

X Error weight

Error order with

0 1 2 3 4

0 1 1 1 10 verifications

0 1 2 2 21 verification

0 1 2 3 32 verifications

0 1 2 3 43 verifications

 For distance-seven code, generically need three rounds of verification against X
errors, and two rounds of Z verification.

 Repeated purification circuits:

Golay code naïve verification
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 Repeated purification circuits:

Golay code naïve verification

Round 1 Round 2 Round 3

Round 1 Round 3

Smarter verification for Steane code
 Observe: X errors are correlated, but not arbitrary.

 Assume at most one X error occurs
during preparation.  What are the
possible errors on the ouput?

– Arbitrary single-bit errors (of
course)
– But what else?

X X

X
X

X

Round 2

X X

X
X

X

XIXIXIX
IXXIIXX
IIIXXXX

X stabilizers:
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Round 1 Round 2 Round 3

Round 1 Round 3

 Observe: X errors are correlated, but not arbitrary.

 Assume at most one X error occurs
during preparation.  What are the
possible errors on the output?

– Arbitrary single-bit errors (of
course)
– But what else?

Round 2

XIXIXIX
IXXIIXX
IIIXXXX

X stabilizers:

X X

X X

X

X

X

X

X

X

X1 X3 X5 X7 ~I

Smarter verification for Steane code

Round 1 Round 2 Round 3

Round 1 Round 3

 Observe: X errors are correlated, but not arbitrary.

 Assume at most one X error occurs
during preparation.  What are the
possible errors on the output?

– Arbitrary single-bit errors (of
course)
– But what else?

Round 2

XIXIXIX
IXXIIXX
IIIXXXX

X stabilizers:

X X

X

X

X

X

X1 X3 X5 X7 ~I
X1 X5 X7 ~X3

Smarter verification for Steane code
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Round 1 Round 2 Round 3

Round 1 Round 3

 Observe: X errors are correlated, but not arbitrary.

 Assume at most one X error occurs
during preparation.  What are the
possible errors on the output?

– Arbitrary single-bit errors (of
course)
– But what else?

Round 2

XIXIXIX
IXXIIXX
IIIXXXX

X stabilizers:

X

X

X

X1 X3 X5 X7 ~I
X1 X5 X7 ~X3

X1X7
X2X3
X4X5

Smarter verification for Steane code

Round 1 Round 3  With one X error during
preparation, what are the
possible output errors?

– Arbitrary single-bit
errors, and

– Arbitrary single-bit
errors, and

Round 2

XIXIXIX
IXXIIXX
IIIXXXX

X stabilizers:

X1X7
X2X3
X4X5

Smarter verification for Steane code

Round 3 Round 1Round 2

X1X3
X2X6
X4X7

Conclusion: Applying
CNOTs from a 123 ancilla

into a 321 ancilla,
correlated output errors
from a single gate error
can be distinguised, and

corrected for.

→ don’t correct!

→ correct!
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 With one X error
during preparation,
possible output
errors are:

– Arbitrary single-
bit errors, and

– Arbitrary single-
bit errors, and

XIXIXIX
IXXIIXX
IIIXXXX

X stabilizers:

X1X7
X2X3
X4X5

Smarter verification for Steane code

Round 1 Round 3Round 2

Round 3 Round 1Round 2

X1X3
X2X6
X4X7

Conclusion:
Applying CNOTs from a 123
ancilla into a 321 ancilla,
correlated output errors from a
single gate error can be
distinguised, and corrected for.
Postselection on no detected
errors is not necessary.  [Aliferis]

→ don’t correct!

→ correct!

Consequences:
- No need for ancilla to wait
for measurement results
before using it.
- Reduced overhead.
- Provable threshold
increases, but conceivably
ancilla reliability decreases.

Consequences:
– No need for ancilla to wait for

measurement results before
using it.

– Reduced overhead.
– Provable threshold increases,

but ancilla reliability may
decrease.

X.X..X..XXXXX..........
XXXX.XX.X....X.........
.XXXX.XX.X....X........
..XXXX.XX.X....X.......
...XXXX.XX.X....X......
X.X.X.XXX..X.....X.....
XXXX...X..XX......X....
XX.XXX...XX........X...
.XX.XXX...XX........X..
X..X..XXXXX..........X.
.X..X..XXXXX..........X

Golay code preparation and verification

Stabilizers:
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Golay code preparation and verification

1.2..3..4567X..........
2345.67.1....X.........
.2345.67.1....X........
..5671.23.4....X.......
...7143.56.2....X......
3.7.2.156..4.....X.....
4562...1..73......X....
51.367...42........X...
.71.452...36........X..
6..1..43725..........X.
.6..3..42715..........X

Preparation circuit (shorthand):

7 rounds s s

Golay code preparation and verification

1.2..3..4567X..........
2345.67.1....X.........
.2345.67.1....X........
..5671.23.4....X.......
...7143.56.2....X......
3.7.2.156..4.....X.....
4562...1..73......X....
51.367...42........X...
.71.452...36........X..
6..1..43725..........X.
.6..3..42715..........X

Preparation circuit (shorthand):

7 rounds

s s

Verification by repeated postselection:
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Golay code correlated errors

Abstract out:
XXXXXXXX

X X

X

X

X
X

X

X
X
X

X

X
X
X
X

X

X
X
X
X
X

Possible output errors from single X failure:
Xs on 
01234567 ~ 
0 234567 ~ 1
0  34567 ~ 12
0   4567 ~ 123
0    567 ~ 1234
0     67 ~ 12345
0      7 ~ 123456

0

1

2

3

4

5

6

7

If we reversed the rounds…
07654321 ~ 
0 654321 ~      7
0  54321 ~     67
0   4321 ~    567
0    321 ~   4567
0     21 ~  34567
0      1 ~ 234567     

Possible output errors from two X failures:
consecutive sequences [a,b] = [a,a+1,…,b-1,b] e.g. 2345

Golay code final preparation and
encoding circuits

A=1243567
B=6274531
Ar=7653421
Br=1354726

Round 
permutations:

Conclusion:
- Reduces verification circuit complexity by half.
- Reduces overhead esp. at high error rates.
- Increases provable threshold (reduced
combinatorial complexity allows much better computer-
aided counting analysis).
- But ancilla reliability may decrease.

Prepare two      ancillas
using round permutation A.
Verify once against X errors
(measuring transversely in
Z eigenbasis).

Prepare two      ancillas
using round permutation Ar

(A reversed).
Verify once against X errors.

Verify once against Z
errors (transverse X
measurement).

Prepare two ancillas using
round permutations B and
Br.  Verify against Z errors.

Verify against
X errors again.

Checking fault-tolerance reduces to checking
following circuits:
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 Aharonov & Ben-Or threshold proof:
– Idea: Maintain inductive invariant of (1-)goodness.  (A good block “has at most one bad subblock.”)

– Inefficient analysis:
–                         not          for a distance-five code
– No threshold for concatenated distance-three codes

 [R ‘05, Aliferis/Gottesman/Preskill ‘05] proofs apply too to distance-three codes
 Idea: Maintain as inductive invariant recursive control over the probability distribution
of errors in each block

 Gives rigorous (and fairly efficient) criterion for threshold

EC

EC

Analysis

Combinatorial analysis

ECX

ECX

ECZ

ECZ

ECX

ECX

ECZ

ECZ
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Conclusion

 Idea: Differently prepare ancillas to verify against each other
– No postselection for Steane code [Aliferis]
– Halves preparation complexity for 23-qubit Golay code [Y. Ouyang, B.R.]

 Technical background
– Error correction
– Stabilizer algebra
– Quantum ECCs

 Ancilla preparation and verification
– Steane preparation and heuristic verification

– for Steane 7-qubit, distance-3 code
– for Bacon/Shor 9-qubit, distance-3 code
– for higher-distance codes

– Strictly fault-tolerant verification
– repeated purification
– tweaked

 Rigorous noise threshold for 23-qubit, distance-7 Golay code
– Technical setup
– Combinatorial analysis

 Result: Threshold of 9.8 x 10-5, or >
10-4 with 99.9% statistical confidence.

 Simulations haven’t been run to
estimate actual improvement.

 Other effects, particularly locality, still
need to be analyzed.

 Analyze schemes which aren’t
strictly fault-tolerant.

 Consider schemes with no
verification required.


